Induction electrohydrodynamics micropump forhigh heat flux cooling
نویسندگان
چکیده
Induction electrohydrodynamics (EHD) has been investigated as a possible means of pumping liquids through microchannel heat sinks for cooling microprocessors. A pump utilizing induction EHD has been microfabricated and tested. The experimental results matched the predictions from correlations to within 30%. Based on this, a micropump has been designed which is miniaturizable to a level where it can be integrated into the microchannels. The micropump utilizes a vibrating diaphragm along with induction EHD for pumping. The vibrating diaphragm does not cause any net flow by itself but causes high local bulk fluid velocities which lead to an increase in the power drawn from the electrodes and therefore, an increase in efficiency of EHD, both of which lead to a higher flow rate. The performance of the pump is predicted using an experimentally validated numerical model. The numerical model solves the three-dimensional transient fluid flow and charge transport problem due to simultaneous actuation of EHD and the vibrating diaphragm. Numerical results for micropumps integrated into trapezoidal microchannels are presented. The results indicate that the proposed micropump design has significant potential for microelectronics cooling applications: It is easy and inexpensive to fabricate, needs no added space, and can achieve the high flow rates needed. 1 Submitted for publication in Sensors and Actuators A: Physical, April 2005, and in revised form, October 2005, and May 2006. 2 To whom correspondence should be addressed: [email protected], (765) 494 5621 Manuscript
منابع مشابه
Performance Characterization of a Traveling-Wave Electrohydrodynamic Micropump
Microscale fluidic manipulation using traveling-wave, induction electrohydrodynamics is demonstrated. A three-phase traveling-wave device fabricated for the experiments provides a temporally and spatially varying electric field which helps induce ions in a fluid subject to a temperature gradient. These ions are moved as the traveling wave propagates, resulting in a drag force being exerted on t...
متن کاملExperimental Characterization of Induction Electrohydrodynamics for Integrated Microchannel Pumping
Microscale fluid flow using traveling-wave induction electrohydrodynamics is demonstrated. A three-phase traveling-wave device fabricated for the experiments provides a temporally and spatially varying electric field which helps induce ions in a fluid that is subjected to a temperature gradient. These ions are moved as the traveling wave propagates, resulting in a drag force being exerted on th...
متن کاملChip integrated micro cooling system for high heat flux electronic cooling applications
Rapid development in VLSI Technology anticipates an urgent need for new micro cooling strategies for high heat flux electronic chips. This paper presents a novel high efficiency micropump/evaporator, based on electrohydrodynamic (EHD) forces, high heat flux electronic sensors. The device incorporates a MEMS-based active micro-evaporative surface and temperature sensors into a single package tha...
متن کاملA simple Analytical model for solidification cooling rate based on the local heat flux density
A new simple analytical model for prediction of cooling rate in the solidification process based on the local heat flux density extracted during solidification is introduced. In the modeling procedure, a solidifying control volume is considered in the mushy zone in which a heat balance equation is used to derive the present model. As the local heat flux density is a measurable parameter, the pr...
متن کاملFilm cooling effectiveness in single row of holes: First moment closure modeling
The present article focuses on the evaluation of a first-moment closure model applicable to film cooling flow and heat transfer computations. The present first-moment closure model consists of a higher level of turbulent heat flux modeling in which two additional transport equations for temperature variance kθ and its dissipation rate εθ are ...
متن کامل